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A non-linear model which describes the dissipative energy losses which are independent of the frequency of the vibrations but 
depend considerably on the amplitude is described. The model enables one to take account uniformly of the energy dissipation 
in structures and materials under steady-state and transient conditions, including wave processes. The parameters of the model 
are determined on the basis of experimental data for materials with characteristic forms of the dependence of the dissipation 
on the amplitude. Analytic solutions of the equation of the model and expressions for the absorption coefficient are obtained 
in a number of important practical cases. In other cases, solutions are obtained by numerical integration. A model problem on 
the longitudinal vibrations of a homogeneous and composite rod are solved using the Godunov difference scheme. 0 2002 Elsevier 
Science Ltd. All rights reserved. 

It is well known that structural damping is practically independent of the frequency but shows a 
considerable dependence on the amplitude. The dissipation in structural materials, when the stresses 
are sufficiently large and they are of the order of the endurance limit, has a similar form. The above- 
mentioned forms of losses usually determine the main dissipation of energy accompanying the vibrations 
of structures. It is these that will be borne in mind when we are considering the internal dissipation of 
energy. Sometimes, they can be taken into account by introducing separate hysteresis loop parameters 
into the calculations [l, 21. However, such an approach is, strictly speaking, only applicable to steady- 
state conditions or close to steady-state conditions. As far as structural damping is concerned, its 
investigation usually reduces to investigating the losses due to dry friction in the contacting surfaces in 
the individual forms of fixed joints [2, 31. 

Linear viscoelastic models are the most convenient in practical calculations. In addition, they are 
not connected with the actual type of a dynamic process. However, the vibration decrements described 
by them depend very much on the frequency and are independent of the amplitude. Their domain of 
applicability is therefore restricted and the problem of developing an adequate and sufficiently universal 
model to describe the internal dissipation of energy continues to be an urgent problem. 

1. DESCRIPTION OF THE MODEL 

An analysis of the relations between the stresses and strains in problems with external and internal 
friction has shown that the existence of a complex o - o,, where o, is the stress at the instant the 
direction of the load changes, is their characteristic feature. We shall assume that the energy dissipation 
is associated with the relaxation of just o - o, and not the total stress. We will consider a three-element 
model, which is structurally a Maxwell model for which a source of the stress o, attained at the instant 
the last change in the value of sign (60) occurs (the dot denotes differentiation with respect to f), is 
included in parallel with the viscous element, 

&=6/E-1-q,, o=o,+o,, 0, =]u&,]“asignE, (1.1) 

where E is the modulus of elasticity, p and E, are the viscosity coefficient and the strain of the viscous 
element, o, is the stress in the viscous element and t is the time. In the general case, the drag of the 
viscous element depends non-linearly on 6”. When a = 1, in the case of a constant coefficient u, we 
have damping with a linear characteristic crv = &,. 
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For convenience in the subsequent discussion, we will assume that all the stresses are divided by the 
modulus of elasticity E and we will retain the earlier notation for them. It follows from relations (1.1) that 

0 - 6, = (u(i - ~5)(“~ sign(i - ir) 

After raising this to the power a and some reduction, we obtain 

Suppose l/u = 0 18 I. Then, taking account of the fact that sign (o - o,,J = sign E, we have 

~=(I-plo-a,l=)e (l-2) 

The ability simultaneously to fix constant levels of the stresses and strains is a distinctive feature of 
model (1.2). It can be considered as a Maxwell model with a variable relaxation time, which is connected 
by means of a specific non-linear relation with the stresses and strains 

ir=k-o/r, t-’ ++-o,JU/o (1.3) 

Maxwell models with a variable relaxation time are used, for example, to describe the high-speed 
deformation of materials [4]. 

The action of harmonic stresses o = A sin it is an important special case. To be specific, we will ass- 
ume that there are no initial stresses and strains. When a = 0.5,l and 2, relation (1.2) can be integrated 
in closed form and we can obtain analytic expressions for the strains 

E, = -~[&z+ln(l-&z)] 

a_ =F[ln(l-JiYz)+JiYz-z-ln(l-z)], a=O.5 

a+ =-tln(l-Sz), E_ =:{ln[l-(I-s)z]--ln(l-z)}, a=l 

A I+& 
e+=- - 249 I-S& (1.4) 

-A In--_ 

[ 

I+& 
a--2& I-& 

Inl+(~-~)7/ a=* 

I l-(1-S)& ’ 

s = sin Of, T=2nlo, z=/3Aa c I 

where E, corresponds to the loading in the time interval 0 < f c T/4, and E_ corresponds to the unloading 
in the interval T/4 c t < T/2. In the second half-period, the corresponding &(t) relations for the loading 
and unloading change their signs. 

We will adopt the absorption coefficient v as a measure of the energy dissipation. This coefficient 
is defined as the ratio of the energy dissipated during a cycle of vibrations to the maximum potential 
energy in the cycle [2]. The quantities w, corresponding to (1.4), are defined by the relations 

w= -$[z+ln(l-z)]+j$[Z(I-Z)) -9(l-z)*+18(1-z)-II-6ln(l-z)], a=0.5 

yt=-:[2z+(2-r)In(l-z)], a=1 

w =-Z[ln(l-z)+(l+J;)ln(l+&)+(I-&)ln(l-J;)). a=2 

(1.5) 
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For other a and o(t), the values of &(t) and w can be determined by numerical integration of 
Eq. (1.2). When the loading or unloading is not monotonic, additional “imbedded” hysteresis loops 
appear in a trajectory in the (o, &)-plane. If an internal loop is closed, and the loading and unloading 
is continued, then crm takes a value corresponding to the nearest external loop or to the unclosed 
trajectory along which further deformation occurs. This algorithm for the change in IS~ is quite simply 
implemented during the numerical integration procedure. 

2. FORMULATION OF THE MODEL PROBLEM 

The model for the internal dissipation of energy described above has been used to investigate the 
longitudinal vibrations of a rod. In this case, the dynamic equations for a straight rod of constant cross- 
section take the form 

o’=ir, ti=(l-p(a-o,I")U' (2-l) 

Here U andx are the velocity and coordinate of a section along the axis of the rod and a prime denotes 
a derivative with respect tox. As above, the stresses are divided by the modulus of elasticity, U is divided 
by the velocity of sound in the medium, x is divided by the length of the rod and t is divided by the 
transit time of an acoustic wave along the rod. 

The rod is clamped in the section x = 1. The dynamic behaviour in the section x = 0.5 will be 
considered as the characteristic behaviour. 

System (2.1) was integrated numerically using Godunov’s method [5]. In a uniform mesh with cell 
sidesAx=x,,-x,_iandAt=t’-t, 

U*=U.+(a,-o,_,)At/Ax 

o’=a.+(l-lo’-IS,@ b=(U,-U,_,)AtIAx 
(2.2) 

The mean integral values on the sides of a computational cell t’ and t, are labelled using an asterisk as 
a superscript and subscript, respectively, and the mean integral values on the sidesx, _i andx,, are labelled 
with subscripts n - 1 and n. 

Newton’s method is used to solve the second equation of (2.2) 

where cri is the value of cr* at the i-th iteration. Here, account has been taken of the fact that 

sign ( 6* -cm 1 = sign k = sign b 

The relations in the characteristics of system (2.1) 

o,+jU,=(~+jU-pb(o-cr,(a/2)j 

(2.3) 

(24 

where j is the direction cosine of the inward normal to the side x = x, of a computational cell, were 
used to calculate the decay of the discontinuity when x = x,. The subscript j = -1 corresponds to a cell 
in the layer t,, adjoining x = x, on the side where x < x, and the subscript j = + 1 corresponds to a 
similar cell on the other side where x > x. 

It was assumed in the calculations that At = Ax = 0.001 and three iterations were carried out using 
Newton’s method. A check on the convergence showed that the error in calculating the amplitudes of 
the stress did not exceed 0.02% in this case. 

3. RESULTS OF NUMERICAL CALCULATIONS 

Calculations of the hysteresis loop for different forms of o(t), including those having the form of a “linear 
sine” and meanders with different rates of increase and decrease of the load, showed that the hysteresis 
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loops defined by Eq. (1.2) and, consequently, also the absorption coefficients, are independent of the 
frequency. They remained unchanged if, within the limits of each cycle, the loading and unloading are 
monotonic functions of time. The hysteresis loops forA = 1, B = 0.8 and different values of c1 are shown 
on the left of Fig. 1. Because of distortions of the relation I, both he dimensions as well as the shape 
of a loop vary when the dissipation parameters c1 and p vary. The characteristic distortions c(t) are seen 
on the right of Fig. 1 for stresses which vary according to a “linear sine” law. This law is also represented 
by the dashed curve. 

By relations (1.2) and (1.5), the absorption coefficient is a function of c1 and z. If the stresses are 
normalized using the different characteristic values of A4 and Mt, then, for a fixed value of CX, it follows 
from the condition that \~r is invariant that 

P, = P(M / M)a (3.1) 

The stresses will hence forth be normalized using the maximum value. In particular, when they vary 
harmonically, it will be assumed that A = 1. When the second normalized value of M, is chosen, the 
results are recalculated with simple multiplication byM,/M and they will correspond to the value of pi 
defined by expression (3.1). 

The values of c1 and 0 for actual materials and structures can be determined by carrying out a non- 
linear regression using model (1.2) for the experimental w(A) relations. These relations are shown in 
Fig. 2 for a cable (the open circles) and a single wire (the dark circles) when M = 98 MPa and, also, 
for 12 X 13 steel after tempering (the small crosses) when M = 343 MPa [6]. The continuous curves 
correspond to relations which describe model (1.2) for the following values of the parameters: a = 0.61, 
/3 = 0.19 (curve l), c1 = 0.92, B = 0.04 (curve 2), and a = 1.75,p = 0.094 (curve 3). We shall henceforth 
call the v(A) relations the energy-dissipation amplitude characteristics. It can be seen that the model 
reproduces the experimental curves quite well even when there is a tenfold change in the amplitude. 
At the same time, amplitude characteristics of different types: soft (l), linear (2) and hard (3) are 
modelled. 

The type of w(A) relation has a substantial effect on the shape of the wave front. The leading part 
of the stress wave, which arises in the rod when a constant unit stress is suddenly applied to the end of 
the rod x = 0, is shown in Fig. 3 at the instant t = 1. In the case of a small value of a, that is, in the 
case of a soft amplitude characteristic, the front is concave and has a positive curvature. When a > 1, 
which corresponds to a hard dissipation characteristic, it becomes convex. The parameter B mainly 
determines the width of the front and its velocity. As l3 increases, the velocity of the front decreases, 
it becomes very blurred and broader. After the passage of the front, a constant stress is established 
behind it. 

Decay of the discontinuity is observed at the boundary of segments of the rod with a different level 
of attenuation and it is more pronounced for segments with soft dissipation characteristics. The decay 
of the discontinuity as the wave passes from a segment with relatively strong attenuation (p = 0.7) to 
a segment with weaker damping (l3 = 0.5) is represented by curve I in Fig. 4. For the whole rod 
o = 0.1. The decay of the discontinuity is accompanied by an increase in the stresses in the reflected 
wave and the passing wave. The decay of the discontinuity at the joint of the segments, arranged in the 
reverse order, represented by curve 2. In this case, after the front passes across the joint, the stresses 

-1 -4 
-4 0 e 4 0 0.5 r/T I 

Fig. 1 
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on both sides of it are less than in a homogeneous rod. The wave in a homogeneous rod when l3 = 0.5 
is represented by the dashed curve. 

The free vibrations of a prestretched rod with initial stresses o = 1 in all sections were considered. 
Its end x = 0 was released at the instant l = 0. The amplitude envelope when 01 = 0.93 (curve a) and 
a = 0.1 (curve b) are shown on the left of Fig. 5. In both cases it is assumed than p = 0.5. The 
corresponding w(A) relations are also shown in Fig. 2 by curves a and b. The dissipation characteristic 
a is soft and b is hard, and their parameters are chosen in such a way that, when4 = 0.5, the absorption 
coefficient is the same. In the case of a soft amplitude characteristic, the vibrations initially, for large 
amplitudes (t < 200), decay more slowly and, when the amplitudes become small, they decay more rapidly 
than in the case of a hard characteristic. 

The existence of segments with a different energy dissipation can introduce noticeable irregularities 
into free vibrations, especially at the initial stage. The free vibrations of a rod, for half of which, 
x c 0.5, the parameter l3 = 0.5 and for the other half of which p = 0.7, are shown on the right in 
Fig. 5. The dissipation parameter a = 0.05 remained constant throughout the whole rod. Distortions 
of the shape of the waves and the non-monotonic form of the amplitude variation can be seen. For 
comparison, the change in the stresses in a homogeneous rod, when p = 0.7 and a has the same value, 
is shown by the dashed curves. 

The results obtained show that the proposed model enables one to give an adequate description of 
frequency-independent energy dissipation in structures and materials for a wide spectrum of dynamic 
processes. 
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